翻訳と辞書
Words near each other
・ Katzrin
・ Katzrin ancient village and synagogue
・ Katzsohlbach
・ Katzsohlteich
・ Katzwang
・ Katzweiler
・ Katzwinkel
・ Katzwinkel, Vulkaneifel
・ Katz–Lang finiteness theorem
・ Katádfa
・ Kató Bárczy
・ Kató Havas
・ Kató Hámán
・ Kató Lomb
・ Katúň
Katětov–Tong insertion theorem
・ Katıralanı
・ Katō Danzō
・ Katō District
・ Katō District, Hokkaido
・ Katō District, Hyōgo
・ Katō Hiroyuki
・ Katō Kiyomasa
・ Katō Mitsuyasu
・ Katō Sadakichi
・ Katō Shrine
・ Katō Tadaaki
・ Katō Takaaki
・ Katō Tomosaburō
・ Katō Yasuaki


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Katětov–Tong insertion theorem : ウィキペディア英語版
Katětov–Tong insertion theorem
The Katětov–Tong insertion theorem is a theorem of point-set topology proved independently by Miroslav Katětov〔Miroslav Katětov, ''On real-valued functions in topological spaces'', Fundamenta Mathematicae 38 (1951), 85–91. ()〕 and Hing Tong〔Hing Tong, ''Some characterizations of normal and perfectly normal spaces'', Duke Mathematical Journal 19 (1952), 289–292. 〕 in the 1950s.
The theorem states the following:
Let X be a normal topological space and let g, h\colon X \to \mathbb be functions with g upper semicontinuous, h lower semicontinuous and g \leq h. There exists a continuous function f\colon X \to \mathbb with g \leq f \leq h.
This theorem has a number of applications and is the first of many classical insertion theorems. In particular it implies the Tietze extension theorem and consequently Urysohn's lemma, and so the conclusion of the theorem is equivalent to normality.
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Katětov–Tong insertion theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.